Generic representation of self-similarity via structure sensitive sampling of noisy imagery
نویسنده
چکیده
Abstract: An adaptive sampling scheme is presented for discrete representation of complex patterns in noisy imagery. In this paper, patterns to be observed are assumed to be generated as fractal attractors associated with a fixed set of unknown contraction mappings. To maintain geometric complexity, the brightness distribution of self-similar patterns are counted on 2D array of Gaussian probability density functions. By solving a diffusion equation on the Gaussian array, capturing probability of unknown fractal attractor is generated as a multi-scale image. The totality of local maxima of the capturing probability, then, yields a pattern sensitive sampling of fractal attractors. For eliminating background noise in this sampling process, two filters are introduced: input filter based on local structure analysis on the Gaussian array, and, output filter based on probabilistic complexity analysis at feature points. The sampled image through these filters are structure sensitive so that extracted feature pattrers support invariant subset with respect to mapping sets associated with observed patterns. As the main result, a generic model is established for unknown self-similar patterns in background noise. The detectability of the generic model has been verified through simulation studies.
منابع مشابه
Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملDeblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملUnsupervised Context-Sensitive Spelling Correction of English and Dutch Clinical Free-Text with Word and Character N-Gram Embeddings
We present an unsupervised context-sensitive spelling correction method for clinical free-text that uses word and character n-gram embeddings. Our method generates misspelling replacement candidates and ranks them according to their semantic fit, by calculating a weighted cosine similarity between the vectorized representation of a candidate and the misspelling context. To tune the parameters o...
متن کاملTransPath: Representation Learning for Heterogeneous Information Networks via Translation Mechanism
In this paper, we propose a novel network representation learning model TransPath to 1 encode heterogeneous information networks (HINs). Traditional network representation learning 2 models aim to learn the embeddings of a homogeneous network. TransPath is able to capture the 3 rich semantic and structure information of a HIN via meta-paths. We take advantage of the concept 4 of translation mec...
متن کاملError bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion
On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. Notes Theor. Comput. Sci.
دوره 46 شماره
صفحات -
تاریخ انتشار 2001